Лекции товароведение        25 сентября 2020        2228         0

Органические вещества

 

Органические вещества товаров — это соединения, в состав которых входят атомы углерода и водорода. Они подразделяются на мономеры, олигомеры и полимеры.

Мономеры — органические вещества, состоящие из одного соединения и не подвергающиеся расщеплению с образованием новых органических веществ. Распад мономеров происходит в основном до углекислого газа и воды.

325-органические-вещества

Моносахариды — мономеры, относящиеся к классу углеводов, в состав молекулы которых входят углерод, водород и кислород (СН2О)n. Наибольшее распространение из них имеют гексозы (С6Н12О6) — глюкоза и фруктоза. Они встречаются в основном в пищевых продуктах растительного происхождения (плодах и овощах, вкусовых напитках и кондитерских изделиях).

Промышленностью выпускается также чистая глюкоза и фруктоза как продукт питания и сырье для производства кондитерских изделий и напитков для диабетиков. Из натуральных продуктов больше всего глюкозы и фруктозы (до 60 %) содержит мед.

Моносахариды придают продуктам сладкий вкус, обладают энергетической ценностью (1 г — 4 ккал) и влияют на гигроскопичность содержащих их продуктов. Растворы глюкозы и фруктозы хорошо сбраживаются дрожжами и используются другими микроорганизмами, поэтому при содержании до 20 % и повышенном содержании воды ухудшают сохраняемость.

Органические кислоты — соединения, в составе молекулы которых находится одна или несколько карбоксильных групп (-СООН).

В зависимости от числа карбоксильных групп органические кислоты подразделяются на моно-, ди- и трикарбоновые кислоты. Другими классификационными признаками этих кислот служит число атомов углерода (от С2 до С40), а также амино- и фенольных групп.

Природные органические кислоты содержатся в свежих плодах и овощах, продуктах их переработки, вкусовых товарах, а также в кисломолочных продуктах, сырах, кисломолочном сливочном масле.

Органические кислоты — соединения, придающие продуктам кислый вкус. Поэтому они используются в виде пищевых добавок в качестве подкислителей (уксусная, лимонная, молочная и другие кислоты) для сахаристых кондитерских изделий, алкогольных и безалкогольных напитков, соусов.

Наибольшее распространение в пищевых продуктах имеют молочная, уксусная, лимонная, яблочная и винная кислоты. Отдельные виды кислот (лимонная, бензойная, сорбиновая) обладают бактерицидными свойствами, поэтому их используют в качестве консервантов.

Органические кислоты пищевых продуктов относятся к дополнительным энергетическим веществам, так как при их биологическом окислении выделяется энергия.

Жирные кислоты — карбоновые кислоты алифатического ряда, имеющие не менее шести атомов углерода в молекуле (С6-С22 и выше). Они подразделяются на высшие (ВЖК) и низкомолекулярные (НЖК).

Важнейшие природные насыщенные ВЖК — стеариновая и пальмитиновая, а ненасыщенные — олеиновая, арахидоновая, линолевая и линоленовая. Из них последние две относятся к полиненасыщенным незаменимым жирным кислотам, обусловливающим биологическую эффективность пищевых продуктов. Природные ВЖК могут содержаться в виде жиров во всех жиросодержащих продуктах, однако в свободном виде они встречаются в небольшом количестве, так же как и НЖК.

Аминокислоты — карбоновые кислоты, содержащие одну или несколько аминогрупп (NH2).

Аминокислоты в товарах могут находиться в свободном виде и в составе белков. Всего известно около 100 аминокислот, из них почти 80 встречаются только в свободном виде. Глютаминовая кислота и ее натриевая соль широко применяются в качестве пищевой добавки в составе приправ, соусов, пищевых концентратов на мясной и рыбной основах, так как усиливают вкус мяса и рыбы.

Витамины — низкомолекулярные органические соединения, являющиеся регуляторами или участниками процессов обмена веществ в организме человека.

Витамины могут самостоятельно участвовать в обмене веществ (например, витамины С, Р, А и т.п.) или входить в состав ферментов, катализирующих биохимические процессы (витамины В1, В2, В3, В6 и др.).

Кроме указанных общих свойств, каждый витамин имеет специфические функции и свойства. Эти свойства рассматриваются в рамках дисциплины «Физиология питания».

325-органические-вещества-1

В зависимости от растворимости витамины подразделяются следующим образом:

  • на водорастворимые (В1, В2, В3, РР, В6, В9, В12, С и др.);
  • жирорастворимые (А, Д, Е, К).

К группе витаминов относят также витаминоподобные вещества, часть из которых называют витаминами (каротин, холин, витамин U и др.).

Спирты — органические соединения, содержащие в молекулах одну или несколько гидроксильных групп (ОН) у насыщенных атомов углерода. По количеству этих групп различают одно-, двух- (гликоли), трех- (глицерин) и многоатомные спирты.

Этиловый спирт получают в качестве готовой продукции в спиртовой промышленности, а также в виноделии, ликеро-водочной, пивоваренной промышленности, при производстве вин, водок, коньяка, рома, виски, пива. Кроме того, этиловый спирт в небольших количествах образуется при производстве кефира, кумыса и кваса.

Олигомеры — органические вещества, состоящие из 2-10 остатков молекул однородных и разнородных веществ.

В зависимости от состава олигомеры подразделяются на однокомпонентные, двух-, трех- и многокомпонентные. К одно-компонентным олигомерам относятся некоторые олигосахариды (мальтоза, трегалоза), к двухкомпонентным — сахароза, лактоза, жиры-моноглицериды, в состав которых входят остатки молекул глицерина и только одной жирной кислоты, а также гликозиды, сложные эфиры; к трехкомпонентным — рафиноза, жиры-диглицериды; к многокомпонентным — жиры-триглице-риды, липоиды: фосфатиды, воски и стероиды.

Олигосахариды — углеводы, в состав которых входят 2-10 остатков молекул моносахаридов, связанных гликозидными связями. Различают ди-, три- и тетрасахариды. Наибольшее распространение в пищевых продуктах имеют дисахариды — сахароза и лактоза, в меньшей мере — мальтоза и трегалоза, а также трисахариды — рафиноза. Указанные олигосахариды содержатся только в пищевых продуктах.

Сахароза (свекловичный, или тростниковый сахар) — дисахарид, состоящий из остатков молекул глюкозы и фруктозы. При кислотном или ферментативном гидролизе сахароза распадается на глюкозу и фруктозу, смесь которых в соотношении 1:1 называют инвертным сахаром.

В результате гидролиза усиливается сладкий вкус продуктов (например, при созревании плодов и овощей), поскольку фруктоза и инвертный сахар обладают повышенной степенью сладости, чем сахароза. Так, если степень сладости сахарозы принять за 100 условных единиц, степень сладости фруктозы будет равна 220, а инвертного сахара — 130.

Сахароза является преобладающим сахаром следующих пищевых продуктов: сахара-песка, сахара-рафинада (99,7-99,9 %), сахаристых кондитерских изделий (50-96 %), некоторых плодов и овощей (бананы — до 18 %, дыни — до 12 %, лук — до 10-12 %) и т.д.

Кроме того, сахароза может содержаться в небольших количествах и в других пищевых продуктах растительного происхождения (зерномучных товарах, во многих алкогольных и безалкогольных напитках, слабоалкогольных коктейлях, мучных кондитерских изделиях), а также сладких молочных товарах — мороженом, йогуртах и т.п. Сахароза отсутствует в пищевых продуктах животного происхождения.

Лактоза (молочный сахар) — дисахарид, состоящий из остатков молекул глюкозы и галактозы. При кислотном или ферментативном гидролизе лактоза распадается до глюкозы и галактозы, которые и используются живыми организмами: человеком, дрожжами или молочнокислыми бактериями.

Лактоза по степени сладости значительно уступает сахарозе и глюкозе, которая входит в ее состав. Уступает она им и по распространенности, так как содержится в основном в молоке разных видов животных (3,1-7,0 %) и отдельных продуктах его переработки.

Однако при использовании молочнокислого и/или спиртового брожений в процессе производства (например, кисломолочных продуктов) и/или сычужного фермента (при производстве сыров) лактоза полностью сбраживается.

Мальтоза (солодовый сахар) — дисахарид, состоящий из двух остатков молекул глюкозы. Это вещество встречается как продукт неполного гидролиза крахмала в солоде, пиве, хлебе и мучных кондитерских изделиях, приготовленных с использованием проросшего зерна. Она содержится только в небольших количествах.

Трегалоза (грибной сахар) — дисахарид, состоящий из двух остатков молекул глюкозы. Этот сахар мало распространен в природе и содержится в основном в пищевых продуктах одной группы — свежих и сушеных грибах, а также в натуральных консервах из них и дрожжах. В квашеных (соленых) грибах трегалоза отсутствует, поскольку расходуется при брожении.

Рафиноза — трисахарид, состоящий из остатков молекул глюкозы, фруктозы и галактозы. Как и трегалоза, рафиноза — мало распространенное вещество, встречающееся в небольших количествах в зерномучных товарах и свекле.

Свойства. Все олигосахариды являются запасными питательными веществами растительных организмов. Они хорошо растворимы в воде, легко подвергаются гидролизу до моносахаридов, обладают сладким вкусом, но степень их сладости различна. Исключение составляет лишь рафиноза — несладкая на вкус.

Олигосахариды гигроскопичны, при высоких температурах (160-200 °С) происходит их карамелизация с образованием темноокрашенных веществ (карамелинов и др.). В насыщенных растворах олигосахариды могут образовывать кристаллы, которые в ряде случаев ухудшают консистенцию и внешний вид продуктов, вызывая образование дефектов (например, засахаривание меда или варенья; образование кристаллов лактозы в сгущенном молоке с сахаром).

Липиды и липоиды — олигомеры, в состав которых входят остатки молекул трехатомного спирта глицерина или других высокомолекулярных спиртов, жирных кислот, а иногда и других веществ.

Липиды — это олигомеры, являющиеся сложными эфирами глицерина и жирных кислот — глицеридами. Смесь природных липидов, в основном триглицеридов, принято называть жирами. В товарах содержатся именно жиры.

В зависимости от количества остатков молекул жирных кислот в глицеридах различают моно-, ди- и триглицериды, а в зависимости от преобладания предельных или непредельных кислот жиры бывают жидкие и твердые. Жидкие жиры бывают чаще всего растительного происхождения (например, растительные масла: подсолнечное, оливковое, соевое и т.п.), хотя есть и твердые растительные жиры (какао-масло, кокосовое, пальмоядровое).

Твердые жиры — это в основном жиры животного или искусственного происхождения (говяжий, бараний жир; коровье масло, маргарин, кулинарные жиры). Однако среди животных жиров есть и жидкие (рыбий, китовый и т.п.).

Жиры содержатся в большинстве пищевых продуктов.

В зависимости от количественного содержания жиров все потребительские товары можно подразделить на следующие группы.

1. Товары с супервысоким содержанием жиров (90,0-99,9 %). К ним относятся растительные масла, животные и кулинарные жиры, коровье топленое масло.

2. Товары с преимущественным содержанием жиров (60-89,9 %) представлены сливочным маслом, маргарином, шпиком свинины, орехами: грецкими, кедровыми, фундуком, миндалем, кешью и т.п.

3. Товары с высоким содержанием жиров (10-59 %). В эту группу входят концентрированные молочные продукты: сыры, мороженое, молочные консервы, сметана, творог, сливки с повышенной жирностью, майонез; жирные и средней жирности мясо, рыба и продукты их переработки, икра рыб; яйцо; необезжиренная соя и продукты ее переработки; торты, пирожные, сдобное печенье, орехи, арахис, шоколадные изделия, халва, кремы на жировой основе и др.

4. Товары с низким содержанием жиров (1,5-9,9 %) — бобовые крупы, закусочные и обеденные консервы, молоко, сливки, кроме высокожирных, кисломолочные напитки, отдельные виды нежирной рыбы (например, семейства тресковых) или мяса II категории упитанности и субпродуктов (кости, головы, ножки и т.п.).

5. Товары с очень низким содержанием жиров (0,1-1,4 %) — большинство зерномучных и плодоовощных товаров.

6. Товары, не содержащие жиров (0 %), — слабоалкогольные и безалкогольные напитки, сахаристые кондитерские изделия, кроме карамели и конфет с молочными и ореховыми начинками, ириса; сахар; мед.

Общие свойства. Жиры являются запасными питательными веществами, обладают самой высокой энергетической ценностью среди других питательных веществ (1 г — 9 ккал), а также биологической эффективностью, если содержат полиненасыщенные незаменимые жирные кислоты.

Жиры имеют относительную плотность меньше 1, поэтому легче воды. Они нерастворимы в воде, но растворимы в органических растворителях (бензине, хлороформе и др.). С водой жиры в присутствии эмульгаторов образуют пищевые эмульсии (маргарин, майонез).

Жиры подвергаются гидролизу при действии фермента липазы или омылению под действием щелочей. В первом случае образуется смесь жирных кислот и глицерина; во втором — мыла (солей жирных кислот) и глицерина. Ферментативный гидролиз жиров может происходить и при хранении товаров. Количество образующихся свободных жирных кислот характеризуется кислотным числом.

Усвояемость жиров во многом зависит от интенсивности липаз, а также температуры плавления. Жидкие жиры с низкой температурой плавления усваиваются лучше, чем твердые с высокой температурой плавления. Высокая интенсивность усвоения жиров при наличии большого количества этих или других энергетических веществ (например, углеводов) приводит к отложению их избытка в виде жира-депо и ожирению.

Жиры, содержащие непредельные (ненасыщенные) жирные кислоты, способны к окислению с последующим образованием перекисей и гидроперекисей, которые оказывают вредное воздействие на организм человека. Товары с прогоркшими жирами утрачивают безопасность и подлежат уничтожению или промпереработке.

Прогоркание жиров служит одним из критериев окончания срока годности или хранения жиросодержащих товаров (овсяной крупы, пшеничной муки, печенья, сыров и др.). Способность жиров к прогорканию характеризуется йодным и перекисным числами.

Жидкие жиры с высоким содержанием непредельных жирных кислот могут вступать в реакцию гидрогенизации — насыщения таких кислот водородом, при этом жиры приобретают твердую консистенцию и выполняют функцию заменителей некоторых твердых животных жиров. Данная реакция положена в основу производства маргарина и маргариновой продукции.

Липоиды — жироподобные вещества, в состав молекул которых входят остатки глицерина или других высокомолекулярных спиртов, жирных и фосфорной кислот, азотистых и других веществ.

К липоидам относятся фосфатиды, стероиды и воски. От липидов они отличаются наличием фосфорной кислоты, азотистых оснований и других веществ, отсутствующих в липидах. Это более сложные вещества, чем жиры.

Большинство их объединяет наличие в составе жирных кислот. Второй компонент — спирт — может иметь разную химическую природу: в жирах и фосфатидах — глицерин, в стероидах — высокомолекулярные циклические спирты-стерины, в восках — высшие жирные спирты.

Наиболее близки по химической природе к жирам фосфатиды (фосфолипиды) — сложные эфиры глицерина жирных и фосфорной кислот и азотистых оснований. В зависимости от химической природы азотистого основания выделяют следующие разновидности фосфатидов: лецитин (новое название — фосфатидилхолин), в составе которого содержится холин; а также кефалин, содержащий этаноламин.

Наибольшее распространение в природных продуктах и применение в пищевой промышленности имеет лецитин. Лецитином богаты желтки яиц, субпродукты (мозги, печень, сердце), молочный жир, бобовые крупы, особенно соя.

Свойства. Фосфолипиды обладают эмульгирующими свойствами, благодаря чему лецитин используется в качестве эмульгатора при производстве маргарина, майонеза, шоколада, мороженого.

Стероиды и воски являются сложными эфирами высокомолекулярных спиртов и высокомолекулярных жирных кислот (С16-С36). Они отличаются от других липоидов и липидов отсутствием в их молекулах глицерина, а друг от друга — спиртами: стероиды содержат остатки молекул стеринов — циклических спиртов, а воски — одноатомные спирты с 12-46 атомами С в молекуле.

Основной стерин растений — β-ситостерин, животных — холестерин, микроорганизмов — эргостерин. Ситостерином богаты растительные масла, холестерином — коровье масло, яйцо, субпродукты.

Свойства. Стероиды нерастворимы в воде, не омыляются щелочами, имеют высокую температуру плавления, обладают эмульгирующими свойствами. Холестерин и эргостерин под воздействием ультрафиолетовых лучей могут превращаться в витамин D.

Гликозиды — олигомеры, в которых остаток молекул моносахаридов или олигосахаридов связан с остатком неуглеводного вещества — аглюкона через гликозидную связь.

Гликозиды содержатся только в пищевых продуктах, в основном растительного происхождения. Особенно их много в плодах, овощах и продуктах их переработки. Гликозиды этих продуктов представлены амигдалином (в ядрах косточковых плодов, миндаля, особенно горького), соланином и чаконином (в картофеле, томатах, баклажанах); гесперидином и нарингином (в цитрусовых), синигрином (в хрене, редьке), рутином (во многих плодах, а также гречневой крупе). В небольших количествах гликозиды содержатся и в продуктах животного происхождения.

Свойства. гликозиды растворимы в воде и спирте, многие из них обладают горьким и/или жгучим вкусом, специфичным ароматом (например, амигдалин имеет горькоминдальный аромат), бактерицидными и лечебными свойствами (например, синигрин, сердечные гликозиды и др.).

Эфиры — олигомеры, в молекуле которых остатки молекул входящих в них веществ объединены простыми или сложными эфирными связями.

В зависимости от этих связей различают простые и сложные эфиры.

  • Простые эфиры входят в состав товаров бытовой химии (растворители) и парфюмерно-косметических изделий. В продовольственных товарах отсутствуют, но могут применяться как вспомогательное сырье в пищевой промышленности.
  • Сложные эфиры — соединения, состоящие из остатков молекул карбоновых кислот и спиртов.

Сложные эфиры низших карбоновых кислот и простейших спиртов обладают приятным фруктовым запахом, поэтому их иногда называют фруктовыми эфирами.

Сложные (фруктовые) эфиры совместно с терпенами и их производными, ароматическими спиртами (эвгенолом, линало-олом, анетолом и др.) и альдегидами (коричным, ванильным и т.п.) входят в состав эфирных масел, которые обусловливают аромат многих пищевых продуктов (фруктов, ягод, вин, ликероналивочных, кондитерских изделий). Сложные эфиры, их композиции и эфирные масла являются самостоятельным товаром — пищевыми добавками, например ароматизаторами.

Свойства. Сложные эфиры легко летучи, нерастворимы в воде, но растворимы в этиловом спирте и растительных маслах. Эти свойства используются для извлечения их из пряно-ароматического сырья. Сложные эфиры гидролизуются под действием кислот и щелочей с образованием входящих в их состав карбоновых кислот или их солей и спиртов, а также вступают в реакции конденсации с образованием полимеров и переэтирификации с получением новых эфиров за счет замены одного спиртового или кислотного остатка.

Полимеры — высокомолекулярные вещества, состоящие из десятков и более остатков молекул однородных или разнородных мономеров, соединенных химическими связями.

Они характеризуются молекулярной массой от нескольких тысяч до нескольких миллионов кислородных единиц и состоят из мономерных звеньев. Мономерное звено (ранее называемое элементарное) — составное звено, которое образуется из одной молекулы мономера при полимеризации. Например, в крахмале — С6Н10О5. С увеличением молекулярной массы и количества звеньев возрастает прочность полимеров.

По происхождению полимеры делят на природные, или биополимеры (например, белки, полисахариды, полифенолы и т.п.), и синтетические (например, полиэтилен, полистирол, фенолоальдегидные смолы). В зависимости от расположения в макромолекуле атомов и атомных групп различают линейные полимеры с открытой линейной цепью (например, натуральный каучук, целлюлоза, амилоза), разветвленные полимеры, имеющие линейную цепь с ответвлениями (например, амилопектин), глобулярные полимеры, отличающиеся преобладанием сил внутримолекулярного взаимодействия между группами атомов, входящих в молекулу, над силами межмолекулярного взаимодействия (например, белки мышечной ткани мяса, рыбы и т.п.), и сетчатые полимеры с трехмерными сетками, образованными отрезками высокомолекулярных соединений цепного строения (например, отверженные фенолоальдегидные смолы). Существуют и другие структуры макромолекул полимеров (лестничные и т.п.), но они встречаются редко.

По химическому составу макромолекулы различают гомополимеры и сополимеры. Гомополимеры — высокомолекулярные соединения, состоящие из одноименного мономера (например, крахмал, целлюлоза, инулин и др.). Сополимеры — соединения, образованные из нескольких различных мономеров (двух и более). Примером могут служить белки, ферменты, полифенолы.

Биополимеры — природные высокомолекулярные соединения, образующиеся в процессе жизнедеятельности растительных или животных клеток.

В биологических организмах биополимеры выполняют четыре важнейшие функции:

 

1) рациональное запасание питательных веществ, которые организм расходует при нехватке или отсутствии поступления их извне;

2) формирование и поддержание в жизнеспособном состоянии тканей и систем организмов;

3) обеспечение необходимого обмена веществ;

4) защита от внешних неблагоприятных условий.

Перечисленные функции биополимеры продолжают выполнять частично или полностью и в товарах, сырьем для которых служат определенные биоорганизмы. При этом преобладание тех или иных функций биополимеров зависит от того, какие потребности удовлетворяют конкретные товары.

Например, пищевые продукты выполняют в первую очередь энергетические и пластические потребности, а также потребность во внутренней безопасности, поэтому в их составе преобладают запасные усвояемые (крахмал, гликоген, белки и т.п.) и неусвояемые (целлюлоза, пектиновые вещества) или трудноусвояемые биополимеры (некоторые белки), характеризующиеся высокой механической прочностью и защитными свойствами.

В плодоовощных товарах присутствуют биополимеры, обладающие бактерицидным действием, что обеспечивает дополнительную защиту от неблагоприятных внешних воздействий, в первую очередь микробиологического характера.

Биополимеры продовольственных товаров представлены усвояемыми и неусвояемыми полисахаридами, пектиновыми веществами, усвояемыми и трудно- или неусвояемыми белками, а также полифенолами.

В продовольственных товарах растительного происхождения преобладающими биополимерами являются полисахариды и пектиновые вещества, а в товарах животного происхождения — белки. Известны товары растительного происхождения, состоящие почти целиком из полисахаридов с небольшим количеством примесей (крахмал и крахмалопродукты).

В товарах животного происхождения полисахариды практически отсутствуют (исключение — мясо и печень животных, которые содержат гликоген), однако товары, которые состоят только из белка, также отсутствуют.

Полисахариды — это биополимеры, содержащие кислород и состоящие из большого числа мономерных звеньев типа С5Н8О4 или С6Н10О5.

По усвояемости организмом человека полисахариды подразделяются на усвояемые (крахмал, гликоген, инулин) и неусвояемые (целлюлоза и др.).

Полисахариды образуются преимущественно растительными организмами, поэтому являются количественно преобладающими веществами продовольственных товаров растительного происхождения (70-100 % сухого вещества). Исключение составляет лишь гликоген, так называемый животный крахмал, образующийся в печени животных.

Разные классы и группы товаров отличаются подгруппами преобладающих полисахаридов. Так, в зерномучных товарах (кроме сои), мучных кондитерских изделиях, картофеле и орехах преобладает крахмал.

В плодоовощных товарах (кроме картофеля и орехов), сахаристых кондитерских изделиях крахмал либо отсутствует, либо содержится в небольших количествах. В этих товарах основными углеводами являются моно- и олигосахариды.

Крахмал — биополимер, состоящий из мономерных звеньев — глюкозидных остатков.

Природный крахмал представлен двумя полимерами: амилозой с линейной цепью и амилопектином — с разветвленной, причем последний преобладает (76-84 %). В растительных клетках крахмал формируется в виде крахмальных зерен.

Их размер, форма, а также соотношение амилозы и амилопектина являются идентифицирующими признаками природного крахмала определенных видов (картофельного, кукурузного и др.). Крахмал — запасное вещество растительных организмов.

Свойства. Амилоза и амилопектин различаются не только строением, но и свойствами. Амилопектин с большой молекулярной массой (100 000 и более) нерастворим в воде, а амилоза растворима в горячей воде и образует слабовязкие растворы.

Образование и вязкость крахмального клейстера обусловлены в значительной мере за счет амилопектина. Амилоза легче, чем амилопектин, подвергается гидролизу до глюкозы. В процессе хранения происходит старение крахмала, вследствие чего снижается его водоудерживающая способность.

По содержанию крахмала пищевые продукты как основные его источники можно подразделить на следующие группы:

  • Продукты с высоким содержанием крахмала (50-80 %), представленные зерномучными товарами — зерном, крупами, кроме бобовых; макаронными и сухарными изделиями, а также пищевой добавкой — крахмалом и модифицированным крахмалом.
  • Продукты со средним содержанием крахмала (10-49 %). К ним относятся картофель, бобовые крупы, кроме сои, в которой отсутствует крахмал, хлеб, мучные кондитерские изделия, орехи, незрелые бананы.
  • Продукты с низким содержанием крахмала (0,1-9 %): большинство свежих плодов и овощей, кроме перечисленных, и продукты их переработки, йогурты, мороженое, вареные колбасы и другие комбинированные продукты, при производстве которых используется крахмал как стабилизатор консистенции или загуститель.

В остальных продовольственных товарах крахмал отсутствует.

Гликоген — резервный полисахарид животных организмов. Он имеет разветвленную структуру и по строению близок к амилопектину. Наибольшее количество его содержится в печени животных (до 10 %). Кроме того, он находится в мышечной ткани, сердце, мозге, а также в дрожжах и грибах.

Свойства. Гликоген образует с водой коллоидные растворы, гидролизуется с образованием глюкозы, дает с йодом красно-бурое окрашивание.

Целлюлоза (клетчатка) — линейный природный полисахарид, состоящий из остатков молекул глюкозы.

Свойства. Целлюлоза является полициклическим полимером с большим числом полярных гидроксильных групп, что придает жесткость и прочность ее молекулярным цепям (а также повышает влагоемкость, гигроскопичность).

Целлюлоза нерастворима в воде, не поддается действию слабых кислот и щелочей, а растворяется только в очень немногих растворителях (в медно-аммиачном растворителе и в концентрированных растворах четвертичных аммониевых оснований).

Пектиновые вещества — комплекс биополимеров, основная цепь которых состоит из остатков молекул галактуроновой кислоты.

Пектиновые вещества представлены протопектином, пектином и пектиновой кислотой, которые отличаются молекулярной массой, степенью полимеризации и наличием метальных групп. Общим их свойством является нерастворимость в воде.

Протопектин — полимер, основная цепь которого состоит из большого числа мономерных звеньев — остатков молекул пектина. Протопектин включает молекулы арабана и ксилана. Он входит в состав срединных пластинок, связывающих отдельные клетки в ткани, а также совместно с целлюлозой и гемицеллюлозами — в оболочки растительных тканей, обеспечивая их твердость и прочность.

Свойства. Протопектин подвергается кислотному и ферментативному гидролизу (например, при созревании плодов и овощей), а также деструкции при длительной варке в воде. В результате этого ткани размягчаются, что облегчает усвоение пищевых продуктов организмом человека.

Пектин — полимер, состоящий из остатков молекул метилового эфира и неметилированной галактуроновой кислоты. Пектины разных растений отличаются различной степенью полимеризации и метилирования.

Это влияет на их свойства, в частности желирующую способность, благодаря которой пектин и содержащие его в достаточном количестве плоды используются в кондитерской промышленности при производстве мармелада, пастилы, джема и т.п. Желирующие свойства пектина возрастают с увеличением его молекулярной массы и степени метилирования.

Свойства. Пектин подвергается омылению под действием щелочей, а также ферментативному гидролизу с образованием пектиновых кислот и метилового спирта. Пектин нерастворим в воде, не усваивается организмом, но обладает высокой водоудерживающей и сорбционной способностью.

Благодаря последнему свойству он выводит из организма человека многие вредные вещества: холестерин, соли тяжелых металлов, радионуклиды, бактериальные и грибные яды.

Пектиновые вещества содержатся только в нерафинированных пищевых продуктах растительного происхождения (зерномучных и плодоовощных товарах), а также в продуктах с добавкой пектина или растительного сырья, богатого им (фруктово-ягодные кондитерские изделия, сбивные конфеты, торты и т.п.).

Белки — природные биополимеры, состоящие из остатков молекул аминокислот, связанных амидными (пептидными) связями, а отдельные подгруппы содержат дополнительно неорганические и органические безазотистые соединения.

Следовательно, по химической природе белки могут быть органическими, или простыми, полимерами и элементоорганическими, или сложными, сополимерами.

Простые белки состоят только из остатков молекул аминокислот, а сложные белки кроме аминокислот могут содержать неорганические элементы (железо, фосфор, серу и др.), а также безазотистые соединения (липиды, углеводы, красящие вещества, нуклеиновые кислоты).

В зависимости от способности растворяться в различных растворителях простые белки подразделяют на следующие виды: альбумины, глобулины, проламины, глютелины, протамины, гистоны, протеноиды.

Сложные белки подразделяются в зависимости от безазотистых соединений, входящих в состав их макромолекул, на следующие подгруппы:

  • фосфоропротеиды — белки, содержащие остатки молекул фосфорной кислоты (казеин молока, вителлин яиц, ихтулин икры рыб). Эти белки нерастворимы, но набухают в воде;
  • гликопротеиды — белки, содержащие остатки молекул углеводов (муцины и мукоиды костей, хрящей, слюны, а также роговицы глаз, слизистой оболочки желудка, кишечника);
  • липопротеиды — белки с остатками молекул липидов (содержатся в мембранах, протоплазме растительной и животных клеток, плазме крови и т.п.);
  • хромопротеиды — белки с остатками молекул красящих соединений (миоглобин мышечной ткани и гемоглобин крови и др.);
  • нуклеопротеиды — белки с остатками нуклеиновых кислот (белки ядер клетки, зародышей семян злаковых, гречишных, бобовых и др.).

В состав белков может входить 20-22 аминокислоты в разном соотношении и последовательности. Эти аминокислоты делятся на незаменимые и заменимые.

Незаменимые аминокислоты — аминокислоты, не синтезируемые в организме человека, поэтому они должны поступать извне с пищей. К ним относятся изолейцин, лейцин, лизин, метионин, фенилаланин, треонин, триптофан, валин, аргинин и гистидин.

Заменимые аминокислоты — синтезируемые в организме человека аминокислоты.

В зависимости от содержания и оптимального соотношения незаменимых аминокислот белки подразделяют на полноценные и неполноценные.

Полноценные белки — белки, в состав которых входят все незаменимые аминокислоты в оптимальном для организма человека соотношении. К ним относятся белки молока, яиц, мышечной ткани мяса и рыбы, гречневой круп и др.

Неполноценные белки — белки, в составе которых отсутствует или содержится в недостаточном количестве одна или несколько незаменимых аминокислот. К ним относятся белки костей, хрящей, кожи, соединительных тканей и т.п.

По усвояемости белки подразделяют на усвояемые (белки мышечных тканей, молока, яиц, круп, овощей и т.п.) и трудноусвояемые (эластин, коллаген, кератин и т.д.).

Макромолекулы белков имеют сложное строение. Различают четыре уровня организации белковых молекул: первичную, вторичную, третичную и четвертичную структуры.

Первичной структурой называется последовательность аминокислотных остатков в полипептидной цепи, соединенных амидной связью.

Вторичная структура относится к типу укладки полипептидных цепей, чаще всего в виде спирали, витки которой удерживаются водородными связями.

Под третичной структурой понимают расположение полипептидной цепи в пространстве. У многих белков эта структура образуется из нескольких компактных глобул, называемых доменами и связанных тонкими перемычками — вытянутыми полипептидными цепями.

Четвертичная структура отражает способ объединения и расположения в пространстве макромолекул, состоящих из нескольких не связанных ковалентными связями полипептидных цепей.

Между этими субъединицами возникают водородные, ионные и другие связи. Изменение рН, температуры, обработка солями, кислотами и тому подобное приводит к диссоциации макромолекулы на исходные субъединицы, но при устранении указанных факторов происходит самопроизвольная реконструкция четвертичной структуры. Более глубокие изменения структуры белков, включая и третичную, называются денатурацией.

Белки содержатся во многих пищевых продуктах: растительного происхождения — зерномучных, плодоовощных, мучных кондитерских товарах и животного происхождения — мясных, рыбных и молочных товарах. В ряде пищевых продуктов белки либо совсем отсутствуют, либо их содержание ничтожно мало и не имеет существенного значения в питании, хотя может влиять на выпадение осадка или помутнение (например, в соках).

Свойства. Физико-химические свойства белков определяются их высокомолекулярной природой, компактностью укладки полипептидных цепей и взаимным расположением аминокислот. Молекулярная масса белков варьирует от 5 тыс. до 1 млн.

В продовольственных товарах наибольшее значение имеют следующие свойства: энергетическая ценность, ферментативный и кислотный гидролиз, денатурация, набухание, меланоидинообразование.

Энергетическая ценность белков равна 4,0 ккал на 1 г. Однако для организма человека более важна биологическая ценность белков, определяемая содержанием незаменимых аминокислот.

Ферментативный и кислотный гидролиз белков происходит под воздействием протеолитических ферментов и соляной кислоты желудочного сока. Благодаря этому свойству усвояемые белки используются организмом человека, а образующиеся при гидролизе аминокислоты участвуют в синтезе белков организма человека. Гидролиз белков происходит при брожении теста, производстве спирта, вин и пива, квашеных овощей.

Денатурация белков происходит путем обратимых и глубоких необратимых изменений в структуре белка. Обратимая денатурация связана с изменениями в четвертичной структуре, а необратимая — во вторичной и третичной структурах.

Денатурация происходит при действии высоких и низких температур, обезвоживании, изменении рН среды, повышенной концентрации сахаров, солей и других веществ, при этом улучшается усвояемость белков, но утрачивается способность к растворению в воде и других растворителях, а также к набуханию.

Процесс денатурации белков является одним из наиболее значимых при производстве многих пищевых продуктов и кулинарных изделий (выпечке хлебобулочных и мучных кондитерских изделий, квашении овощей, молока, засолке рыбы и овощей, сушке, консервировании сахаром и кислотами).

Набухание, или гидратация, белков — их способность поглощать и удерживать связанную воду, увеличивая при этом объем. Это свойство положено в основу приготовления теста для хлебобулочных и мучных кондитерских изделий, при производстве колбасных изделий и др.

Сохранение белков в набухшем состоянии является важной задачей многих содержащих их пищевых продуктов. Утрата белками водоудерживающей способности, называемой синерезисом, вызывает старение белков муки и круп, особенно бобовых, черствение хлебобулочных и мучных кондитерских изделий.

Меланоидинообразование — способность аминокислотных остатков белков взаимодействовать с редуцирующими сахарами с образованием темноокрашенных соединений — меланоидинов. Это свойство наиболее активно проявляется при повышенных температурах и рН от 3 до 7 при производстве хлебобулочных и мучных кондитерских изделий, пива, консервов, сушеных плодов и овощей.

В результате изменяется цвет продуктов от желто-золотистого до коричневого разных оттенков и черного, при этом снижается и биологическая ценность продуктов.

Ферменты — биополимеры белковой природы, являющиеся катализаторами многих биохимических процессов.

Основная функция ферментов — ускорение превращений веществ, поступающих, или имеющихся, или образующихся при обмене веществ в любом биологическом организме (человек, животные, растения, микроорганизмы), а также регулирование биохимических процессов в зависимости от изменяющихся внешних условий.

В зависимости от химической природы макромолекул ферменты подразделяют на одно- и двухкомпонентные. Однокомпонентные состоят только из белка (например, амилаза, пепсин и др.), двухкомпонентные — из белка и небелковых соединений.

На поверхности молекулы белка или в специальной щели находятся активные центры, представленные совокупностью функциональных групп аминокислот, непосредственно взаимодействующих с субстратом, и/или небелковые составляющие — коферменты. К последним относятся витамины (В1, В2, РР и др.), а также минеральные вещества (Сu, Zn, Fe и т.п.). Так, к железосодержащим ферментам относятся пероксидаза и каталаза, а к медьсодержащим — аскорбатоксидаза.

По рекомендации Международного биохимического союза в зависимости от типа катализируемой реакции ферменты подразделяют на следующие шесть классов, которые, в свою очередь, делятся на подклассы и подподклассы:

  • оксиредуктазы — ферменты, катализирующие окислительно-восстановительные реакции путем перенесения ионов водорода или электронов, например, дыхательные ферменты пероксидаза, каталаза;
  • трансферазы — ферменты, катализирующие перенос функциональных групп (СН3, СООН, NH2 и т.п.) от одной молекулы к другой, например, ферменты, катализирующие дезаминирование и декарбоксилирование аминокислот, образующихся при гидролизе белков сырья (зерна, плодов, картофеля), что приводит к накоплению высших спиртов при производстве этилового спирта, вин и пива;
  • гидролазы — ферменты, катализирующие гидролитическое расщепление связей (пептидной, гликозидной, эфирной и др.). К ним относятся липазы, гидролизирующие жиры, пептидазы — белки, амилазы и фосфорилазы — крахмал и др.;
  • лиазы — ферменты, катализирующие негидролитическое отщепление групп от субстрата с образованием двойной связи и обратные реакции. Например, пируватдекарбоксилаза отщепляет от пировиноградной кислоты СО2, что приводит к образованию ацетоальдегида как промежуточного продукта спиртового и молочнокислого брожений;
  • изомеразы — ферменты, катализирующие образование изомеров субстрата путем перемещения кратных связей или групп атомов внутри молекулы;
  • лигазы — ферменты, катализирующие присоединение двух молекул с образованием новых связей.

Значение ферментов. В неочищенном виде ферменты с древнейших времен используются при производстве многих продовольственных товаров (в хлебопечении, спиртовой промышленности, виноделии, сыроделии и т.д.). Потребительские свойства ряда товаров в значительной мере формируются в процессе особой операции — ферментации (черный, красный, желтый чай, какао-бобы и др.).

Очищенные ферментативные препараты начали применять в XX в. при производстве соков, чистых аминокислот для лечения и искусственного питания, удаления лактозы из молока для продуктов детского питания и т.д. При хранении пищевых продуктов ферменты способствуют созреванию мяса, плодов и овощей, но могут вызвать и их порчу (гниение, плесневение, ослизнение, брожение).

Свойства. Ферменты обладают высокой каталитической активностью, благодаря чему небольшое количество их может активизировать биохимические процессы огромных количеств субстрата; специфичностью действия, т.е. определенные ферменты действуют на конкретные вещества; обратимостью действия (одни и те же ферменты могут осуществлять распад и синтез определенных веществ); мобильностью, проявляющейся в изменении активности под воздействием различных факторов (температуры, влажности, рН среды, активаторов и инактиваторов).

Для каждого из указанных свойств характерны определенные оптимальные диапазоны (например, в диапазоне температур 40-50 °С отмечается наибольшая активность ферментов). Любые отклонения от оптимального диапазона вызывают снижение активности ферментов, а иногда и их полную инактивацию (например, высокие температуры стерилизации).

На этом основаны многие методы консервирования продовольственного сырья. При этом происходит частичная или полная инактивация собственных ферментов сырья и продукции, а также микроорганизмов, вызывающих их порчу.

Для инактивации ферментов продовольственного сырья и товаров при хранении применяют разнообразные физические, физико-химические, химические, биохимические и комбинированные методы.

Полифенолы — биополимеры, в состав макромолекул которых могут входить фенольные кислоты, спирты и их эфиры, а также сахара и другие соединения.

Эти вещества встречаются в живой природе только в клетках растений. Кроме того, они могут содержаться в древесине и изделиях из нее, торфе, буром и каменном угле, нефтяных остатках.

Наибольшее значение полифенолы имеют в свежих плодах, овощах и продуктах их переработки, включая вина, ликероналивочные изделия, а также в чае, кофе, коньяке, роме и пиве. В указанных продуктах полифенолы влияют на органолептические свойства (вкус, цвет), физиологическую ценность (многие из этих веществ обладают Р-витаминной активностью, бактерицидными свойствами) и сохраняемость.

К полифенолам, содержащимся в товарах растительного происхождения, относятся дубильные (например, катехины), а также красящие вещества (флавоноиды, антоцианы, меланины и др.).

 

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *