С различными моделями и модельными представлениями люди встречаются постоянно. По существу, моделями являются карты дорог, фотографии, рисунки, различные описания, списки и многие другие знаковые представления информации.

Модели играют огромную роль в различных науках как средство для отражения структуры и свойств различных объектов. Выбор модельных представлений часто определяет успех научных исследований, поскольку от этого выбора зависит точность и достоверность получаемых выводов, прогнозов и рекомендаций.

Модель (в широком понимании) образ (в том числе схема, чертеж, график, план, карта) или прообраз какого-либо объекта или системы объектов (оригинала данной модели), используемый при определенных условиях в качестве их «заместителя». Так, например, моделью Земли служит глобус.

Модели по своей сути — чисто информационное понятие. Модели — это отражение наиболее существенных признаков, свойств и отношений явлений, объектов или процессов предметного мира. Например, фотографии и рисунки — это представления внешнего вида предметов, а чертежи и схемы раскрывают их структуру (внутреннюю организацию).

В то же время для одних и тех же явлений, процессов и объектов можно построить различные модели. Многообразие модельных представлений, связываемых с одними и теми же объектами, отражает различие точек зрения, интересов и потребностей людей в изучении этих объектов, а значит, в решении возникающих у них задач.

Различия между моделями определяются, с одной стороны, степенью их детальности, с другой — разницей выраженных в них внутренних связей отражаемых моделями процессов и явлений. Выбор степени детальности в подбираемых моделях зависит от целей исследования.

Модели можно классифицировать по ряду признаков. По способу построения (форме) модели можно разделить на:

а) материальные модели, которые иначе можно назвать предметными. Они воспринимают геометрические и физические свойства оригинала и всегда имеют реальное воплощение;

б) информационные модели, которые нельзя потрогать или увидеть. Они строятся только на информации. Информационная модель — совокупность информации, характеризующая свойства и состояния объекта, процесса, явления, а также взаимосвязь с внешним миром. Базовый критерий целостности информационной модели — это адекватность модели оригиналу.

Исторически сложилось так, что первые работы по компьютерному моделированию, или, как говорили раньше, моделированию на ЭВМ, были связаны с физикой, где с помощью моделирования решался целый ряд задач гидравлики, фильтрации, теплопереноса и теплообмена, ме­ханики твердого тела и т. д. Моделирование, в основном, представляло собой решение сложных нелинейных задач математической физики с помощью итерационных схем, и по существу было оно моделированием математическим. Успехи математического моделирования в физике способствовали распространению его на задачи химии, электроэнергетики, биологии и некоторые другие дисциплины, причем схемы моделирования не слишком отличались друг от друга. Сложность решаемых на основе моделирования задач всегда ограничивалась лишь мощностью имеющихся ЭВМ.

В настоящее время под компьютерной моделью чаще всего понимают:

  • условный образ объекта или некоторой системы объектов (или процессов), описанный с помощью взаимосвязанных компьютерных таблиц, блоков-схем, диаграмм, графиков, рисунков, анимационных фрагментов, гипертекстов и т. д. и отображающий структуру и взаимосвязи между элементами объекта. Компьютерные модели такого вида мы будем называть структурно-функциональными;
  • отдельную программу, совокупность программ, программный комплекс, позволяющий с помощью последовательности вычислений и графического отображения их результатов воспроизводить (имитировать) процессы функционирования объекта, системы объектов при условии воздействия на объект различных, как правило, случайных факторов. Такие модели принято называть имитационными моделями.

Многие проблемы производства, проектирования, прогнозирования сводятся к широкому классу задач оптимизации, для решения которых применяются математические методы. Типовыми задачами такого плана являются, например, следующие:

  • ассортимент продукции — максимизация выпуска товаров при ограничениях на сырье для производства этих товаров;
  • штатное расписание — составление штатного расписания для достижения наилучших результатов при наименьших расходах;
  • планирование перевозок— минимизация затрат на транспортировку товаров;
  • составление смеси — достижение заданного качества смеси при наименьших расходах;
  • прочие разнообразные задачи оптимального распределения ресурсов и оптимального проектирования и т.д.

При постановке задачи оптимизации определяют:

1) целевую функцию (критерий оптимизации) F = (xj) → max (min, const), которая показывает, в каком смысле решение должно быть оптимальным, т.е. наилучшим. Возможны три вида целевой функции: максимизация, минимизация, назначение заданного значения.

2) ограничения  gi (xj) ≤ (=; ≥) bi, которые устанавливают зависимости между переменными; могут быть односторонними и многосторонними.

3) граничные условия   djxjDj , которые показывают, в каких пределах могут быть значения искомых переменных в оптимальном решении.

Решение задачи, удовлетворяющее всем ограничениям и граничным условиям, называется допустимым.

Важная xaрактеристика задачи оптимизации — ее размерность, которая определяется числом переменных п и числом ограничений т.

При п < т задачи решения не имеют. Необходимым требованием задач оптимизации является условие п > т.

Систему уравнений, для которых п = т рассматривают как задачу оптимизации, имеющую одно допустимое решение (ее можно решать как обычную задачу оптимизации, назначая в качестве целевой функции любую переменную).

Итак, задача имеет оптимальное решение, если она удовлетворяет двум требованиям:

  • имеет более одного решения, т.е. существуют допустимые решения;
  • имеется критерий, показывающий, в каком смысле принимае­мое решение должно быть оптимальным, т.е. наилучшим из допустимых.

В Ехсеl для оптимизации могут быть применен ряд надстроек и средств, таких как «Поиск решения», «Таблицы подстановки», «Подбор параметра».